Volume 1, Issue 1, March 2017, Page: 16-26
Case-Based Reasoning for Building Structures: A Case Study of Timber Floor Slabs Strengthening
Ana Fernández-Cuartero Paramio, Departamento de Construcción y Tecnología Arquitectónica, Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid, Madrid, Spain
Juan Francisco de la Torre Calvo, Departamento de Estructuras y Física de la Edificación, Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid, Madrid, Spain
Antonio Aznar López, Departamento de Estructuras y Física de la Edificación, Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid, Madrid, Spain
José Ignacio Hernando García, Departamento de Estructuras y Física de la Edificación, Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid, Madrid, Spain
Consolación Acha Román, Departamento de Construcción y Tecnología Arquitectónica, Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid, Madrid, Spain
Fernando da Casa Martín, Departamento de Arquitectura, Área de Construcciones Arquitectónicas, Universidad de Alcalá de Henares, Madrid, Spain
Received: Mar. 13, 2017;       Accepted: Mar. 30, 2017;       Published: Apr. 27, 2017
DOI: 10.11648/j.ijem.20170101.13      View  1651      Downloads  77
Abstract
This article presents the application of a Case-based Reasoning (CBR) in order to define the calculation and verification parameters to design building structures. Each and every calculating variable has to be chosen according to construction criteria from a set up list. These decisions are meant to find a solution that will be the closest possible to a valid one, and this will be verified through calculation. In the optimal scenario, the calculation will just verify that the chosen solution is valid, or that it is completely impossible to implement the strengthening; whereas in the worst scenario, the calculating process will simply correct some previous decision, once the strengthening suitability is confirmed. A case study of timber floor slabs straightening is introduced in which a selection of the necessary parameters for its calculation and verification are defined by CBR. Finally, the same case study is built and calculated by SAP commercial program in order to find out whether the defined parameters can actually envisage a proper solution for the strengthening.
Keywords
Case-Based, Reasoning, Floor-Slab, Strengthening, Timber
To cite this article
Ana Fernández-Cuartero Paramio, Juan Francisco de la Torre Calvo, Antonio Aznar López, José Ignacio Hernando García, Consolación Acha Román, Fernando da Casa Martín, Case-Based Reasoning for Building Structures: A Case Study of Timber Floor Slabs Strengthening, International Journal of Engineering Management. Vol. 1, No. 1, 2017, pp. 16-26. doi: 10.11648/j.ijem.20170101.13
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Huo, D., Li, W. Z., Zuo, Y. Z., Liu, Y. M., & Zhou, L. Y. (2013). “Detection Analysis of Steel Structural Damage Based on CBR”. Journal of Beijing University Technology, 39, 570-575.
[2]
RunZhi, J., Sangwon, H., ChangTaek, H., & JiHoon, K. (2014). “Improving accuracy of early stage cost estimation by revising categorical variables in a case-based reasoning model”. Journal of Construction Engineering and Management, 140, 04014025. doi: 10.1061/(ASCE)CO. 1943-7862.0000863.
[3]
Clarke, R. (1988) Knowledge Based Expert Systems. Accesible at: http://www.rogerclarke.com/SOS/KBT.htlm
[4]
Castro, J. L., Navarro, M., Sánchez, J. M., Zurita & J. M. (2010). “Introducing attributive risk for retrieval in case-based reasoning”. Revista de aplicaciones de sistemas expertos basados en el conocimiento. Especialmente, para los fines que se persiguen en este sistema, 24, 257-268.
[5]
Yejun Xu, Qingli Da. (2008). “A method for multiple attribute decision making with incomplete weight information under uncertain linguistic environment”. Knowledge-Based Systems, 21, 837-841.
[6]
Yuanping Xu, Zhijie Xu, Xiangqian Jiang, & Scott, P. (2010) “Developing a knowledge-based system for complex geometrical product specification data manipulation”. Knowledge-Based Systems, 24, 10-22.
[7]
J. H. M. TAH, V. CARR, R. HOWES, (1998) "An application of case-based reasoning to the planning of highway bridge construction", Engineering, Construction and Architectural Management, Vol. 5 Iss: 4, pp.327 – 338.
[8]
EDIZ ALKOC, FUAT ERBATUR, (1998) "SITE EXPERT: a prototype knowledge-based expert system", Engineering, Construction and Architectural Management, Vol. 5 Iss: 3, pp.238 – 251.
[9]
ShiHai, Z., & JinPing, O. (2013). “BP-PSO-based intelligent case retrieval method for high rise structural form selection”. Science China: Technologies Sciences, 56, 940-944. doi: 10.1007/s11431-013-5167-8.
[10]
Konczak, A., & Paslawsky, J. (2013). “Abductive and Deductive Approach in Learning from Examples Method for Technological Decision Making”. Modern Building Material, Structures and Techniques, 57, 583-588.
[11]
Jing, D. & Bormann, J. (2014). “Improved similarity Measure in Case-Base Reasoning with Global Sensitivity Analysis: An Example of Construction Quantity Estimating”. Journal of Computing in Civil Engineering, 28, 04014020. doi: 10.1061/(ASCE)CP. 1943-5487.0000267.
[12]
Kartelj, A., Surlan, N., & Cekic, Z. (2014). “Case-based reasoning and electromagnetism-like method in construction management”. KYBERNETES, 43, 265-280. doi: 10.1108/K-06-2013-0105.
[13]
James D., (1998) "The development of ground floor constructions: part 5 (damp proofing existing ground floors)", Structural Survey, Vol. 16 Iss: 3, pp.136 – 140.
[14]
A. Cruden, (1990) "Fort George rehabilitation – Case study on timber strengthening", Structural Survey, Vol. 8 Iss: 1, pp.31 – 43.
[15]
Macías Bernal, J. M., Calama Rodríguez, J. M., Chávez de Diego, M. J. (2014). “Modelo de predicción de la vida útil de la edificación patrimonial a partir de la lógica difusa”. Informes de la construcción del Instituto Torroja, 533.
[16]
Cárdenas, M., Schanack, F. & Ramos, O. R. (2010). “Design, construction and testing of a composited glued timber-concrete structure to be use in bridges”. Revista de la construcción, 2, 63-65.
[17]
European Committee for Standardization., & British Standards Institution. (1994). “Eurocode 5: Design of timber structure”. Brussels: BSI.
[18]
Instituto Nacional de Normalización INN-Chile. 1999. NCh 1198. Of91 Madera. Construcciones en madera. Cálculo. INN, Santiago.
[19]
EHE. Real Decreto 1247/2008. Ehe-08. Instrucción del Hormigón Estructural. 2008.
[20]
CTE CTE. DB-SE. Seguridad Estructural. Ley 38/1999 de 5 de noviembre, de Ordenación de la Edificación (LOE), 2006.
Browse journals by subject